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ABSTRACT: We model proteins as continuous electrostatic media immersed in water
to investigate charge mediated processes in their interior. We use a Green’s function
formalism and find analytical expressions for the electrostatic energy in the vicinity of the
protein surfaces. We find that due to image charges generated by the protein dielectric
medium embedded in water, the effective electrostatic interaction between the two charges
in the interior of the protein has an energy larger than the thermal energy. We focus
specifically on kinesin to asses the strength of the electrostatic interaction between ATP and
ADP molecules. It is known experimentally that ADP expulsion is correlated to ATP
kinesin binding while both processes are essential for the kinesin walk. We estimate that
the Bjerrum length in the interior of the kinesin dimer protein is of the order of 4 nm and
that the pure electrostatic ATP–ADP interaction is of the order of 3–5 kBT. © 2009 Wiley
Periodicals, Inc. Int J Quantum Chem 110: 233–241, 2010

Key words: protein electrostatics; charge transfer; kinesin walk; ATP–ADP interaction;
Bjerrum length

1. Introduction

A large number of biological processes involve
charge transfer from the exterior of a
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macromolecule to its interior. Because of the com-
plex dielectric and shielding properties of both the
macromolecules as well as their environment it is
many times hard to asses the role electrostatic energy
plays in these processes. For instance, one case of
interest involves charged ATP entry in motor pro-
teins such as kinesin that is accompanied by the
expulsion of charged ADP found in distant locations
within the protein [1, 2]. Other cases involve the
so-called electrostatic switch that induces a phosph-
dependent regulation or the entry of charges in
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the cell membrane [3, 4]. Macromolecules are com-
plex, discrete networks that involve distributions of
charges, dipoles, etc. To investigate electrostatic phe-
nomena in such systems we assume that they com-
prise a continuous medium with a relative dielectric
constant that has a small value, typically of the order
ε � 4, whereas the surrounding medium has a
large dielectric constant similar to that of water, viz.
εH2O � 80. What we are interested in analyzing is
the effect the interfaces between the low and high
dielectric media play in the energetics of charged
molecules.

When a charge is placed in front of a dielec-
tric embedded in a high permittivity medium the
induced image charges repel the charge and lead to
a small field in the interior of the dielectric. When,
on the other hand, this charge is placed just in
the interior of the dielectric, the force-field changes
drastically and the new force exerted is substan-
tially larger. This is the process that is followed, for
instance, during the ATP hydrolysis circle in a motor
protein; whereas initially the ATP charge is exterior
to protein, on entry and hydrolysis a local conforma-
tional change takes place that captures the charge in
the protein interior that essentially excludes all water
molecules. To estimate the change in the force, we
will model the protein as an infinite dielectric with
a given thickness d representing the longitudinal
dimension of the dimeric protein. Although approx-
imating a complex protein through a slab geometry
presents a gross simplification of the problem, it nev-
ertheless captures the essential effects the presence
of interfaces have on the charge energetics within the
protein [5, 6].

In the remaining of the article, we will describe
the method of calculation in the following section
and apply it to the interface of two dielectrics first
and to a slab geometry subsequently. We will pro-
vide analytical expressions for the Green’s functions
and though these we will evaluate the scale of the
Bjerrum length in the interior of the model protein.
In the final section, we will focus more explicitly on
kinesin, as one of the best known molecular motors
and present quantitative estimates for the ATP–ADP
interaction inside this protein.

2. Green’s Function Method

We will evaluate the Greens function of the Pois-
son equation to calculate the force field generated
by charges in the vicinity of the protein–water inter-

face. We briefly outline the procedure [7] later. The
Poisson equation is written as

∇2φ(r) = −ρ(r)
ε

(1)

where ρ(r) is the charge density, ε = ε0εr, where
ε0 the vacuum dielectric permittivity whereas εr is
the relative permittivity of the specific dielectric
medium. The Green’s function equation correspond-
ing to Eq. (1) is

∇2G(r, r′) = −1
ε
δ(r − r′) (2)

Expanding the δ-function in the Fourier domain as

δ(r − r′) =
∫

dk
(2π)3

eik·(r−r′) (3)

it is easy to see that the Green’s function of Eq. (2) is

G(r, r′) = 1
ε

∫
dk

(2π)3

eik·(r−r′)

k2
= 1

4πε|r − r′| (4)

For a problem in which there are changes in only
one (e.g., z) axis while the configuration is invariant
in the other two, one may write the Green’s function
of Eq. (4) as

G(r, r′) =
∫

dk⊥
(2π)2

eik⊥·(r−r′)⊥g(z, z′; k⊥) (5)

with k = k⊥ + ẑkz and where, upon substitution in
Eq. (2) and use of Eq. (4) we obtain the following
equation for the reduced Green’s function g(z, z′; k):

[
k2

⊥ − ∂2

∂z2

]
g(z, z′; k) = 1

ε
δ(z − z′) (6)

When the reduced Green’s function is evaluated
through the solution of Eq. (6), the complete Green’s
function is found by direct substitution of the former
in Eq. (5). It suffices thus to solve Eq. (6) and find the
reduced Green’s function to calculate the complete
Green’s function; performing the angular integration
in Eq. (5) and using cylindrical coordinates, we find

G(ρ, z) = 1
2π

∫ ∞

0
J0(kρ)g(z, z′, k)kdk (7)

where J0(z) is the Bessel function of zero order.
We note that on the axis of the charge that is
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FIGURE 1. Two seminfinite dielectric media in which
the first with relative dielectric permittivity ε1 represents
water whereas the second with ε2 is a semi-infinite
protein. The charge q1 is located at a distance d from the
water–protein interface.

perpendicular to the interface, i.e., for ρ = 0, the
integral expression simplifies to

G(z) = 1
2π

∫ ∞

0
g(z, z′, k)kdk (8)

3. Charge in Front of a Dielectric
Interface

Let us first consider the simpler case of a charge
placed in front of an infinite interface at z = 0 that
separates two dielectric media (Fig. 1). The dielectric
at z > 0 has relative permittivity ε1 whereas the one
at z < 0 has relative permittivity ε2. We consider that
the medium 2 is a protein with typical permittivity
ε2 � 4 whereas medium 1 is water with ε1 � 80.
We place a charge q ≡ q1 in the water at distance d
from the protein interface. We would like to calculate
potentials and fields induced by the charge q in both
media.

To find the Green’s function in this simple case, we
need first to solve Eq. (6) for the reduced Greens func-
tion in the direction z where the electric permittivity
has a discontinuity across the interface. The bound-
ary conditions on it are E(1)

⊥ = E(2)

⊥ and D(1)
z = D(2)

z , or
ε1E(1)

z = ε2E(2)
z . The calculation of g(z, z′; k) is simple

in this case; we assume that the unit charge is placed

at the point z′ > 0, i.e., located in the medium with
dielectric constant ε1. The reduced Green’s function
takes the form

g(z, z′; k) = Ae−kz, z > z′

g(z, z′; k) = Be−kz + Cekz, z′ ≤ z < 0

g(z, z′; k) = Dekz, 0 ≥ z (9)

where k ≡ k⊥. The Green’s function g(z, z′; k) is con-
tinuous on the charge at z′ whereas it has a derivative
jump equal to g′(z′, z′; k) = −1/ε1. Using these facts
and the boundary conditions at the interface leads
easily to the following expression for the reduced
Green’s function:

g(z, z′; k) = 1
2kε1

[
e−k|z−z′| + ε1 − ε2

ε1 + ε2
e−k(z+z′)

]
, z ≥ 0

g(z, z′; k) = 1
2kε1

2ε1

ε1 + ε2
e−k(z−z′), z ≤ 0 (10)

Use of Eq. (8) leads directly in the standard expres-
sions for the potentials for the unit charge in front of
dielectric interface [8]:

G(z, z′) = 1
4πε1

[
1

|z − z′| + ε1 − ε2

ε1 + ε2

1
z + z′

]
, z ≥ 0

(11)

G(z, z′) = 1
4π

2
ε1 + ε2

1
−k(z′ − z)

, z ≤ 0 (12)

We note in passing that the two expressions for
the reduced Green’s functions of Eq. (10) for z′ > 0
may be combined to the following expression:

g(z, z′; k) = 1
2kε1

[
e−k|z−z′| + ε1 − ε2

ε1 + ε2
e−k(|z|+|z′|)

]
(13)

The expression for the reduced Green’s function for
the charge in the interior, i.e., for z′ < 0 is obtained
simply by multiplying the expression in Eq. (8) by
ε1/ε2 and replace the z-coordinates by their neg-
atives. The interaction energy of the charges as a
function of the distances in the interior of the model
protein is shown in Figure 2.

This exercise with a single dielectric interface
shows that the Green’s function method may be used
straightforwardly for the calculation of potentials,
fields as well as forces related to dielectric interfaces.
Before we apply the method to the case of the dielec-
tric slab mimicking the two bounding dielectric
surfaces of protein, let us first do some quantitative
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FIGURE 2. Energy in kBT as a function of distance in
nm for two unit charges near the interface that separates
two media; medium 2 for z < 0 is a semi-infinite protein.
Crosses were obtained numerically through numerical
integration of Eq. (8) whereas the overlapping continuous
curve is the exact result; both for the charge located at
z = 0.1, i.e., in the exterior of the protein. Similarly
circles and the overlapping continuous curve is for the
charge in the interior of the protein at z = −0.1. The
dotted horizontal line marks the room temperature
energy kBT .

estimates; specifically we will evaluate the role a sin-
gle interface has to the electrostatic energy and force
related to the charge-interface geometry.

To perform quantitative estimates, we assume
that the charge is located on the z-axis at z′ and has
charge q1 whereas the second charge is on the same
axis at z and has charge q2. Once the full Green’s func-
tion is evaluated the electrostatic energy between the
two charges is,

U = q1q2

4πε0εr

1
|r − r′| = q1q2

ε0
G(ρ, z) (14)

Denoting G ≡ G(ρ, z), and using units for charges
in electron charges and distances in nm we may
express the electrostatic energy as follows:

U � 2890q1q2G [pN nm]
� 18.0q1q2G [eV] � 722.7q1q2G [kBT] (15)

In case we need to calculate the force excerpted by
charge q1 on the charge q2 we simply have to evaluate
the derivative of the Green’s function wrt to z; we

denote the latter by G′. The force then is expressed
as follows:

F = q1q2

ε0
G′(ρ, z) (16)

leading to the following practical expression in pN:

F � 230q1q2G′[pN]

The above expressions for the energy and the force
should be compared with the corresponding quanti-
ties for two charges embedded in a medium with
relative dielectric permittivity εr. If we write the
charges in units of electron charge and the distance
in nm we have:

F � 230 pN
εr

q1q2

r2

The electrostatic energy between two charges in an
infinite medium is

E = 1
4πε0εr

q1q2

r
,

and using electron charge and nm as units we have,

E � 230
εr

q1q2

r
[pN nm]

that may also be written as

E � 1.43
εr

q1q2

r
[eV] � 57.2

εr

q1q2

r
[kBT].

4. Infinite Dielectric Slab

We model electrostatically a large protein as an
infinite slab with length d and relative permittivity ε2

located between z = −d/2 and z = d/2. The kinesin
slab is embedded in a dielectric medium with much
larger dielectric constant ε2 (Fig. 3). We need to con-
sider two cases with the charge interior and exterior
to the slab.

We calculate the reduced Green’s function in k-
space using as boundary conditions the continuity of
the electrostatic potential across each dielectric sur-
face as well as the the continuity of the dielectric
displacement across the interfaces. Additionally, we
know that g is continuous at z = z′ in which the unit
charge is located while it has a jump in its derivative
with magnitude −1/ε2.
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FIGURE 3. Infinite dielectric slab case in which the
medium with dielectric constant ε2 mimics a protein
whereas ε1 is the the dielectric constant of water. The
distance d denotes the distance of the charge q1 from
the protein–water interface.

4.1. INTERIOR PROBLEM

We consider −d/2 ≤ z′ ≤ d/2, The general
expression for the reduced Greens function is:

gI(z, z′, k) = Ae−kz, z ≥ d/2

gII,1(z, z′, k) = Be−kz + Cekz, z′ ≤ z < d/2

gII,2(z, z′, k) = De−kz + Eekz, −d/2 ≤ z < z′

gIII(z, z′, k) = Fekz, z < −d/2 (17)

Use of the boundary conditions anb the properties
of g at z = z′ result to the following expressions for
the coefficients:

E = 1
2kε2�

[
(ε1 + ε2)

2e−kz′ − (
ε2

1 − ε2
2

)
e−k(d−z′)],

B = 1
2kε2�

[
(ε1 + ε2)

2ekz′ − (
ε2

1 − ε2
2

)
e−k(d+z′)],

C = 1
2kε2�

[
(ε1 − ε2)

2e−k(2d+z′) − (
ε2

1 − ε2
2

)
e−k(d−z′)],

D = 1
2kε2�

[
(ε1 − ε2)

2e−k(2d−z′) − (
ε2

1 − ε2
2

)
e−k(d+z′)],

A = 2ε2

ε1 + ε2
B, F = 2ε2

ε1 + ε2
E. (18)

where

� = (ε1 + ε2)
2 − (ε1 − ε2)

2e−2kd

Solution of this algebraic system and substitu-
tion to the Eq. (17) leads to the following exact
expressions for the reduced Green’s function for the
interior problem:

gI(z, z′, k) = 1
k�

[
(ε1 + ε2)e−k(z−z′) − (ε1 − ε2)e−k(d+z+z′)

]
, z ≥ d

2

gII(z, z′, k) = 1
2kε2�

[
(ε1 + ε2)

2e−k|z−z′| + (ε1 − ε2)
2e−(2d−|z−z′|) − 2

(
ε2

1 − ε2
2

)
e−kd cosh[k(z + z′)]

]
, −d

2
≤ z ≤ d

2

gIII(z, z′, k) = 1
k�

[
(ε1 + ε2)e−k(z′−z) − (ε1 − ε2)e−k(d−z−z′)

]
, z < −d

2
(19)

These exact expressions may be used in conjunc-
tion with Eq. (17) to evaluate the interaction energies
in the interior of the protein. We note that the expres-
sions above involve direct potential terms as well as
terms dependent on the effect of the interface.

4.2. EXTERIOR PROBLEM

Similarly, when we place the unit charge at point
z′ that is exterior to the slab and on the positive axis,
viz. z′ ≥ d/2, we have

gI,1(z, z′, k) = Ae−kz, z ≥ z′

gI,2(z, z′, k) = Be−kz + Cekz,
d
2

≤ z < z′

gII(z, z′, k) = De−kz + Eekz, −d
2

≤ z <
d
2

gIII(z, z′, k) = Fekz, z < −d
2

(20)
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Application of the boundary conditions leads to,

C = 1
2kε1

e−kz′ ,

F = 2ε2e−kz′

k�
,

B = ε2
1 − ε2

2

kε1�
sinh(kd)e−kz′ ,

A = ε2
1 − ε2

2

kε1�
sinh(kd)e−kz′ + 1

2kε1
ekz′ ,

D = ε2 − ε1

k�
e−k(d+z′),

E = ε1 + ε2

k�
e−kz′ (21)

Resolution of this algebraic system of equations
and substitution to the Eq. (20) leads to the final
expressions for the Green’s function for the exterior
problem;

gI(z, z′, k) = 1
2ε1k

e−k|z′−z| + 1
kε1�

(
ε2

1 − ε2
2

)
sinh(kd)e−k(z+z′), z ≥ d

2

gII(z, z′, k) = 1
k�

[
(ε2 − ε1)e−k(z+d+z′) + (ε1 + ε2)e−k(z′−z)

]
, −d

2
≤ z <

d
2

gIII(z, z′, k) = 2ε2

k�
e−k(z′−z), z < −d

2
� = (ε1 + ε2)

2 − (ε1 − ε2)
2e−2kd (22)

4.3. GREEN’S FUNCTIONS

The final expressions for the Green’s functions
may be obtained by inserting the reduced Green’s
functions of Eqs. (19) and (22) into Eq. (7) or (8). We
note that by expanding the denominators (e.g., �)

in power series we may easily obtain exact expres-
sions for the three dimensional Green’s function
in the form of infinite image contributions [6]. For
instance, the interaction of the two charges in the
interior of the protein may be evaluated through the
expression:

G(ρ, z, z′) = 1
4πε2

∞∑
n=0

(
ε1 − ε2

ε1 + ε2

)2n
[

1√
ρ2 + [2dn + |z − z′|]2

+
(

ε1 − ε2

ε1 + ε2

)2 1√
ρ2 + [2d(n + 1) − |z − z′|]2

−
(

ε1 − ε2

ε1 + ε2

) {
1√

ρ2 + [2d(n + 1/2) − (z + z′)]2
+ 1√

ρ2 + [2d(n + 1/2) + (z + z′)]2

}]
(23)

Instead of writing explicitly these long expressions,
we to integrate numerically Eq. (7) for the reduced
Green’s functions; the latter numerical approach is
generalizable to more complex geometries as well.

In Figure 4 we compare the electrostatic interac-
tion energy between two unit charges located in the
interior of the protein slab with that when the charges
are embedded in an infinite medium with the same
dielectric constant as the protein. We observe that
the introduction of the two interfaces reduces dra-
matically the electrostatic interaction between the

charges. We note in the calculations we did not
include the self-interaction terms of the charges with
the surfaces since the latter do not affect the direct
exchange between the two charges. In the figure we
consider a kinesin slab of length 5 nm and place the
charge in the interior an close to the surface at dis-
tances 1 Å (dot-dashed line) and 5 Å (dotted line)
respectively. We note that close to the other surface
of the protein located at z = −2.5 nm the electrostatic
energy is in the thermal noise level. Specifically we
see that the electrostatic interaction becomes of order
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FIGURE 4. Electrostatic interaction energy U (in kBT
at room temperature) as a function of the charge
distance z (in nm) for a protein slab with length 5 nm,
located in the range [−2.5, 2.5] nm and comparison with
corresponding energies for the infinite medium with
permittivity ε2. For a unit charge located at z ′

1 = 2.4 nm,
i.e., at a distance 1 Å in the interior of the protein
(dot-dashed line); infinite medium energy (dashed line).
For a unit charge located at z ′

2 = 2 nm, i.e., at 5 Å from
the interface (dotted line); infinite medium energy (solid
line). The dotted line parallel to the z -axis marks the
thermal energy kBT at room temperature.

kBT at the length scale l � 3 nm and decays beyond
this value at larger distances. In the more relevant
case of a protein slab with d = 8 nm we see from
Figure 5 a similar behavior but with a scale of the
order l ∼ 4 nm for dropping the energy at the kBT
level.

FIGURE 5. Same as in Figure 3 for a protein slab with
d = 8. For a unit charge is located at z ′

1 = 3.9 nm
(dot-dashed line); infinite medium energy (dashed line).
For a unit charge located at z ′

2 = 3.5 nm (dotted curve);
infinite medium energy (solid line).

FIGURE 6. Bjerrum length lB in the interior of the
kinesin protein model (ε = 4) as a function of the
distance l ′ of the source charge from the medium-protein
interface located at z = d/2 (l ′ = d/2 − z ′). The second
(test) charge is placed at distance lB from the source
charge. Dielectric self-energies are not included, only the
direct charge–charge Coulomb energy. Three protein
slab lengths are considered, d = 10 nm (upper
curve-circles), d = 8 nm (middle curve-triangles) and
d = 5 nm (lower curve-crosses).

It is useful to analyze in more detail the depen-
dence of the protein Bjerrum length on the distance
of the unit charge from the interface. We recall that
when two unit charges are placed at a distance lB

equal to the Bjerrum length in dielectric medium
then their electrostatic energy is equal to kBT at room
temperature. For water, we have lB � 0.7 nm while if
the protein medium (ε � 4) were infinite we would
have lB � 14 nm; the presence of the interfaces
changed drastically this last figure. In Figure 6, we
plot the true Bjerrum length in the slab protein model
as a function of distance of the source charge from
one of the surfaces and in the interior of the protein.
We note that when the charge is within an Angstrom
from the surface the image charges are very strong
and the Bjerrum length very small. This feature
changes rapidly within few Angstroms and indeed
we see that at a distance 0.5 nm form the dielectric
surface the Bjerrum length increases to lB ≈ 3 nm
(for d = 5 nm). The nonmonotonicity of the Bjerrum
curve is noteworthy as well as the fact that it reaches
a maximum well before the middle of the protein.
These features clearly depend on the competition
between the screening scale and the actual size of
the protein. For a slab size closer to the kinesin dimer,
i.e., for d = 8 nm we observe that the Bjerrum length
is substantially larger compare to the d = 5 nm case
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reaching a maximum of approximately lB � 4.5 nm.
The Bjerrum length thus depends strongly not only
on the distance of the source charge from the surface
but also on the actual size of the protein because the
latter determines the effect of the second interface
whose presence increases screening. As the size of
the protein increases the effect of the second inter-
face diminishes and the Bjerrum length increases, as
expected.

5. Conclusion

From the analysis of the simple one interface
model we found that the energy of a charge near
the surface but in the interior of the protein is sub-
stantially different compared with the case when it is
just in the exterior. In either case, we saw the energies
involved are close to the thermal energy. Subse-
quently we analyzed a model that contains two inter-
faces that is closer to the protein features. We found
that the energies in the interior are substantially
smaller compared with those if the medium were
infinite; i.e., the presence of the interfaces reduces
the electrostatic interaction [5]. To quantify these fea-
tures, we calculated the effective Bjerrum length lB

in the interior of the protein for three model pro-
tein sizes, viz. d = 5 nm, d = 8 nm (corresponding
approximately to the kinesin dimer size), and d = 10
nm. We found that lB is quite small within few
Angstroms from the interface, yet, increases rapidly
reaching a value larger than 4 nm (for d = 8 nm)
as the charge is moved slightly in the interior. The
Bjerrum length depends strongly not only on the dis-
tance from the surface but also the actual size of the
protein because this determines the effect of the sec-
ond interface whose effect is to increase screening.
As the size of the protein increases the effect of the
second interface diminishes and the Bjerrum length
increases, as expected. This dependence of the Bjer-
rum length on distance plays an important role in the
energetics of the kinesin walk that will be discussed
later.

Dimeric kinesin is a motor protein that hydrolyzes
ATP and moves along protofilaments of micro-
tubules with speeds reaching 500 nm/s. Intense
experimental work over the last 10 years has shed
light in many aspects of the kinesin walk including
specific features of motion and its dependence on
ATP. Nonetheless, the physics of the energy path-
way that starts with the ATP hydrolysis circle and
ends with a kinesin translational step is not known.
Most available kinesin theoretical models are based

either on simple mechanical schemes or deal directly
with the various reaction rates entering in the kinesin
walk.

Recently, we introduced an electrostatic model for
kinesin that goes beyond the simple phenomenolog-
ical models [2]. In this model, the kinesin motion
results from the changes of charges in the ATP and
ADP binding sites as well as the overall electric
charge distribution of the microtubule. More specif-
ically, it was shown that the kinesin dimer is bound
to the negatively charged microtubule due to posi-
tive excess charge in one kinesin head whereas the
tethered head has an axes of negative charge due
to presence of ADP. On ATP capture and hydrol-
ysis, the local charge in the bound head changes
to negative and thus the head is repelled from the
microtubule. At the same time, experiments show
that ADP is expelled from the tethered head and, as a
result, the remaining local positive charge makes the
head fall toward the microtubule due to the gener-
ated attraction. The motion thus of kinesin is seen as
the coordinated rotational and translation of a fluc-
tuating electrical dipole. Special role in this process
plays the charge distribution of the neck region that
is positive in the case of kinesin and thus assists in the
stability of the walk. Finally, the microtubule dipole
moment plays fundamental role in the directionality
of the motion.

Although the electrostatic model is qualitatively
compatible with all known features of the kinesin
walk, one needs to address several specific issues it
raises before a complete physical picture of the walk
emerges. One such issue is related to the mechanism
of ADP expulsion after the ATP capture. Although
one may assume that in some fashion part of the
ATP hydrolysis energy is used for this process, the
precise way this occurs cannot be addressed easily.
One may, for instance, invoke coherent vibrational
energy transfer mechanisms, such as the ones stud-
ied by Davydov and Scott, or direct charge transfer,
as seems to occur in other macromolecule [9, 10]. An
alternative process, which might be to some extent
responsible for the ATP expulsion from the teth-
ered kinesin head, is the direct electrostatic repul-
sion from the ATP molecule that enters and gets
hydrolyzed at the binding site.

The kinesin walk depends at least in part on elec-
trostatic interactions [2]; this is hardly a surprise
since microtubules, on which the walk takes place,
are highly charged and polarized and kinesin itself
has inhomogeneous surface charge distributions. As
the fluctuating charge model is shown to be compat-
ible with numerous experimental data it is necessary
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to begin a quantitative search that will lead to pre-
cise knowledge of the factors involved in the walk.
This is of course a difficult feat because it depends on
detailed microscopic kinesin information as well as
specific experiments addressing electrical features of
the molecule. One feature of the fluctuating charge
model is related to the possible connection of the
ATP entry to the kinesin binding pocket with the
ADP expulsion. Although this correlated event may
depend on a variety of factors such as conforma-
tional changes, vibrational and/or electron transfer
it might has also an electric component stemming
from the direct electrostatic APT–ADP interaction. In
the present short note we explored the electrostatic
aspect of this interaction. Specifically we calculated
the exact Green’s functions for few simple configura-
tions modeling kinesin focusing particularly on the
role of the protein-water interfaces.

To apply the present results to kinesin we may
take into account that after hydrolysis the ATP mol-
ecule carries approximately three electronic charges
while ADP two. As a result, if the two molecules
are assumed to be at a distance or order l � 5
nm from each other, then the effective interaction
between them is of the order of 2−5 kBT, depending
on their proximity to the dielectric interfaces. This
energy should be compared with the ATP hydroly-
sis energy that is of the order of 12 kBT, although,
a part of this energy is consumed entropically [11].
The rest induces in part local conformational changes
leading to the ATP capture as well as other, more
extreme, possibilities such as vibrational selftrap-
ping [10] or even polaronic charge transfer [12]. We
thus find that although the ATP–ADP electrostatic
interaction does not appear sufficient for the ADP
expulsion, it seems that it does participate in the
process.

Although the analytical expressions and estimates
obtained are useful they should be further sub-
stantiated through more precise microscopic mod-
eling that also involve screening effects [13] to
obtain a clearer quantitative physical picture of the

mechanisms involved. Specifically for kinesin the
head–head electrostatic interaction is not only due
to the mutual repulsion of the nucleotides but also
due to the presence of the highly charged tubulin. In
Ref. 2 the vertical parked state of kinesin is found to
be a consequence of the tubulin-ADP repulsion. As
a result, the ADP release rate may be enhanced by
the presence of an ATP in the attached head, which
is already repelled by the −27 electronic charges
localized along the C-terminus of the filament dimer
[14]. In the present model, we only address the
interaction between two charged nucleotides in two
distant locations of the protein; however, the inter-
action with the charged microtuble surface should
also be included. Finally, the presence of salt ions in
the surrounding medium are responsible for Debye
screening. Although in this work we have focused
purely on electrostatic effects due to dielectric dis-
continuities a complete analysis will have to include
ionic effects and screening as well as the role of
thermal fluctuations.
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